

GX9258 14-Bit, 80/105MSPS Dual ADC

FATURES

- 1.8V analog supply
- 1.8V digital output supply
- Low power: 485mW (105MSPS)
- SNR: 76.8dBFS (fin=30.5MHz@105MSPS)
- SFDR: 88dBc (fin=30.5MHz@105MSPS)
- On-chip reference voltage and sample-andhold circuits.
- QFN-64 package 9mm×9mm

APPLICATIONS

- Communications
- Diversity radio systems
- Multimode digital receivers
- I/Q demodulation systems
- Smart antenna systems
- Battery powered instruments
- Handheld oscilloscope
- Portable medical imaging
- Ultrasound equipment
- Radar/LIDAR

FUNCTIONAL BLOCK DIAGRAM

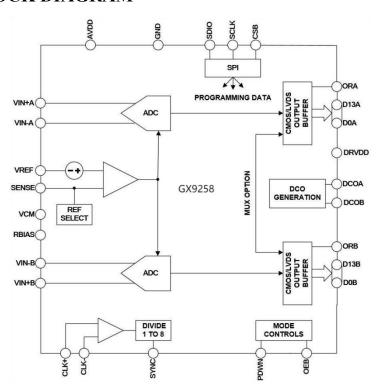


Figure 1 Functional Block Diagram

Version: V1.8

Released Date: 2024/02/29

TABLE OF CONTENTS

FATURES	1
APPLICATIONS	1
FUNCTIONAL BLOCK DIAGRAM	1
TABLE OF CONTENTS	2
GENERAL DESCRIPTION	3
SPECIFICATIONS	4
ADC DC Specifications	
ADC AC Specifications	5
Digital Specifications	6
Timing Specifications	
ABSOLUTE MAXIMUM RATINGS	
ESD CAUTION	
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS	
TYPICAL PERFORMANCE CHARACTERISTICS	
TYPICAL APPLICATION CIRCUITS	15
Analog Input Considerations.	
Clock Input Considerations	
Reference Configuration.	
Digital Outputs	
Digital Output Enable Function (OEB)	
Timing	17
Data Clock Output (DCO)	
Built-in Self-test (BIST)	
Output Test Modes	18
SERIAL PORT INTERFACE (SPI)	
Internal Register Table	
APPLICATIONS INFORMATION	
Power And Ground Recommendations.	23
Exposed Pad Recommendations.	
VCM	
RBIAS	23
Reference Decoupling.	
SPI Port	
Data Output	
OUTLINE DIMENTIONS	
ORDERING GUIDE	
DECLARATION	25

GENERAL DESCRIPTION

The GX9258 is a single-chip, dual-channel, 14-bit, 80 MSPS/105 MSPS analog-to-digital converter (ADC). Powered by a 1.8V power supply, equipped with a high-performance sample-and-hold circuit and an on-chip reference voltage.

The GX9258 features a multistage, differential pipelined architecture with integrated output error correction logic. Provides 14 bits accuracy at a data rate of 105MSPS and ensures no code loss throughout the entire operating temperature range.

Equipped with multiple built-in functional features, which can maximize the flexibility of the device and minimize the system cost, such as generating programmable digital test codes, etc. The available digital test codes include built-in fixed code and pseudo-random code, as well as user- defined test codes input through the Serial Port Interface (SPI).

A differential clock input can be used to control all internal conversion cycles. The digital output data format can be offset binary, gray code or binary complement. Each ADC channel has a data output clock (DCO) to ensure that the receiving logic has the correct latch timing. This device supports 1.8V CMOS output and LVDS output, and the output data can be multiplexed on a single output bus.

The GX9258 is available in a 64-lead QFN package and is specified over the RoHS standard.

SPECIFICATIONS

ADC DC Specifications

AVDD=1.8 V, DRVDD=1.8 V, VIN=-1.0 dBFS differential input, 1.0 V internal reference, unless otherwise noted.

Table 1 ADC DC Specifications

Parameter	Temp		GX9258-80		GX9258- 105				
		Min	Тур	Max	Min	Тур	Max		
Resolution			14			14		Bit	
No Missing Codes	Full		Guaranteed			Guaranteed			
Offset Error	Full		±0.1	±0.7		±0.1	±0.7	%FSR	
Gain Error	Full		-1.5			-1.5		%FSR	
Differential Nonlinearity ¹ (DNL)	Full 25°C	-0.75	±0.45	0.75	-0.75	±0.45	0.75	LSB LSB	
Integral Nonlinearity ¹ (INL)	Full 25°C	-2.5	±1.0	2.5	-2.5	±1.0	2.5	LSB LSB	
Internal Voltage Reference Error	Full		±5			±5		mV	
Input Reference Noise (VREF=1V)	25°C		0.98			0.98		LSB rms	
Analog Input Span (VREF=1V)	Full		2			2		Vpp	
Input Capacitance ²	Full		4			4		pF	
Input Common-Mode Voltage	Full		0.95			0.95		V	
AVDD Supply Voltage	Full	1.7	1.8	1.9	1.7	1.8	1.9	V	
DRVDD Supply Voltage	Full	1.7		1.8	1.7		1.8	V	
I _{AVDD} Supply Current	Full		194.9	200		200.8	210	mA	
I _{DRVDD1} Supply Current (CMOS) I _{DRVDD2} Supply Current (LVDS)	Full Full		76.2 66.9			81 69.7		mA mA	
DC Input Power Consumption	25°C		475	490		485	500	mW	
Sine Wave Input Power Consumption ¹ (CMOS)	Full		488			507		mW	
Sine Wave Input Power Consumption ¹ (LVDS)	Full		471			487		mW	
Power-Down Power	25°C		2			2		mW	

¹ Measured with a 10MHz input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

² Input capacitance refers to the effective capacitance between one differential input pin and AGND.

ADC AC Specifications

AVDD=1.8 V, DRVDD=1.8 V, VIN=-1.0 dBFS differential input, 1.0 V internal reference, unless otherwise noted.

Table 2 ADC AC Specifications

D4	Т		GX9258-8	80	(GX9258-10)5	II:4
Parameter	Temp	Min	Тур	Max	Min	Тур	Max	Unit
Signal-To-Noise Ratio (SNR) f _{in} =30.5MHz	25°C Full.	77	78.2		76	76.8		dBFS dBFS
$f_{in}=60MHz$	25°C		77.2			76.1		dBFS
Signal-To-Noise and Distortion (SNDR) $f_{in}{=}30.5 MHz$ $f_{in}{=}60 MHz$	25°C Full 25°C	76.1	77.3 75.8		75.8	76.6 74.2		dBFS dBFS dBFS
Effective Number of Bits (ENOB) $f_{in}=30.5MHz$	25°C		12.5			12.4		Bit
f _{in} =60MHz	Full 25°C	12.4	12.3		12.3	12		Bit Bit
Spurious-Free Dynamic Range (Third Harmonic)								
$f_{in}=30.5MHz$	25°C Full	88	92		88	92		dBc dBc
f _{in} =60MHz	25°C		82			82		dBc
Spurious-Free Dynamic Range (Second Harmonic)								
$f_{in}=30.5MHz$	25°C Full	87	93		87	93		dBc dBc
f _{in} =60MHz	25°C		95			85		dBc
Crosstalk ¹	Full		-92			-92		dB

^{1.} Crosstalk is measured at 60 MHz with -1.0 dBFS on one channel and no input on the alternate channel.

Digital Specifications

AVDD=1.8 V, DRVDD=1.8 V, VIN=-1.0 dBFS differential input, 1.0 V internal reference, unless otherwise noted.

Table 3 Digital Specification Parameter

Parameter	Temp	Min	Тур	Max	Unit
Differential Clock Inputs (CLK+/-)					
Logic Compliance	Full		CMOS/LVDS/LVPECL		
Internal Common-Mode Bias	Full		0.9		V
Differential Input Voltage	Full	0.2		3.6	V
Input Voltage Range	Full	GND-0.3		AVDD+0.2	V
Input Resistance	Full		8		$\mathrm{k}\Omega$
Input Capacitance	Full		3.5		pF
Logic Input					
(PDWN,SYNC,SCLK,CSB,SDIO)					
High Level Input Voltage	Full	1.2		DRVDD+0.3	V
Low Level Input Voltage	Full	0		0.8	V
Input Resistance	Full		26		kΩ
Input Capacitance	Full		2		pF
Digital Output					
DRVDD = 1.8V					
High Level Input Voltage	Full	1.79			V
Low Level Input Voltage	Full			0.2	V
Code Mode (Default)			Offset Binary		

Timing Specifications

AVDD=1.8 V, DRVDD=1.8 V, VIN=-1.0 dBFS differential input, 1.0 V internal reference, unless otherwise noted.

Davamatan	Тата		GX9258-8	0	(GX9258-10)5	II:4
Parameter	Temp	Min	Тур	Max	Min	Тур	Max	Unit
Clock Parameters Input								
Clock Rate	Full			625			625	MHz
Conversion Rate	Full			80			105	MHz
Aperture Delay (t _A)	Full		1			1		ns
Aperture Jitter	Full		0.1			0.1		ps rms
Data Output Parameters								
t_{A}	Full		1			1		ns
t_{CH}	Full		6.25			4.76		ns
t_{CLK}	Full		12.5			9.52		ns
$t_{ m DCO}$	Full		3			3		ns
t_{PD}	Full		3			3		ns
$t_{ m SKEW}$	Full		0.1			0.1		ns

Table 4 Timing Specifications

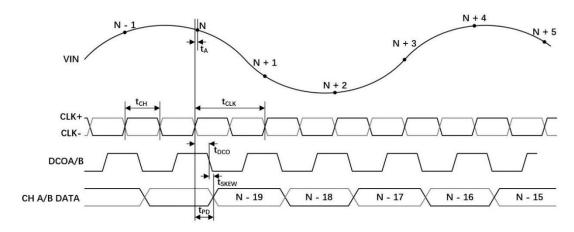


Figure 2 CMOS Output Timing

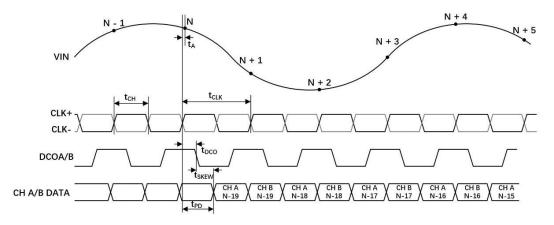


Figure 3 CMOS Interleaved Output Mode Data Output Timing (Output on Channel A Output Pin)

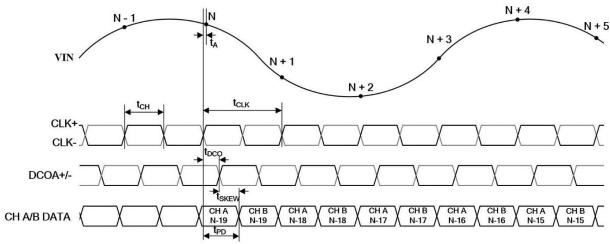


Figure 4 LVDS Output Timing

Table 5 SPI Timing Parameter

Parameter	Min	Тур	Max	Unit	Description
$t_{ m DS}$	2			ns	Setup time between the data and the rising edge of SCLK
t_{DH}	2			ns	Hold time between the data and the rising edge of SCLK
t_{CLK}	40			ns	Period of the SCLK
$t_{\rm S}$	2			ns	Setup time between CSB and SCLK
t_{H}	2			ns	Hold time between CSB and SCLK
t _{HIGH}	10			ns	SCLK pulse width high
t_{LOW}	10			ns	SCLK pulse width low

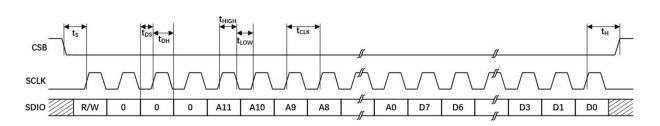


Figure 5 Serial Port Interface Timing

ABSOLUTE MAXIMUM RATINGS

AVDD TO AGND	0.3V to 2V
DRVDD TO AGND	0.3V to 3.9V
Input Voltage (VIN+/-, CLK+/-, VREF, SENSE, VCM, RBIAS)	0.3V to AVDD+0.2V
Input Voltage (CSB, SCLK, SDIO, PDWN)	0.3V to DRVDD+0.3V
Output Voltage (DCOA,DCOB,D0A/D0B 至D13A/D13B)	0.3V to DRVDD+0.3V
Maximum Junction Temperature T _{J,MAX}	150°C
Operating Temperature Range.	40°C to 85°C
Storage Temperature Range	65°C to 150°C
ESD(Human Body Model)	2000V

ATTENTION: Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.

This product is an electrostatic sensitive device. Therefore, proper ESD precaution measures should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

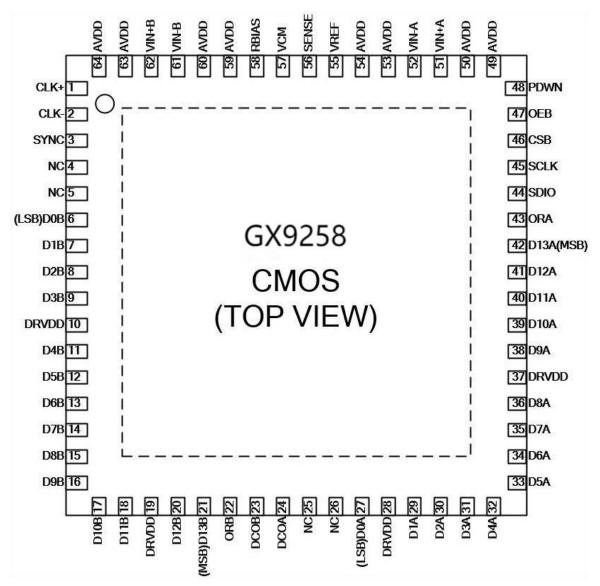


Figure 6 CMOS Pin Configuration

Table 6 Pin Function Description

Pin No.	Mnemonic	Type	Description
0	GND	G	Analog Ground. The pad on the bottom of the package provides the analog ground for the part. This bottom pad must be connected to ground for proper operation for ADC.
1,2	CLK-, CLK+	AI	Differential Clock Input
3	SYNC	DI	Digital Input. Synchronous input clock divider
4,5,25,26	NC	-	Float
6 to 9, 11 to 18, 20, 21	D0B to D13B	DO	Channel B Output Data
10, 19, 28, 37	DRVDD	P	Digital Output Driver Supply. 1.8V Nominal

Pin No.	Mnemonic	Type	Description			
22	ORB	DO	Channel B Output Data. Analog input overrange prompt pin			
23	DCOB	DO	Channel B Data Clock Output			
24	DCOA	DO	Channel A Data Clock Output			
27, 29 to 36, 38 to 42	D0A to D13A	DO	Channel A Output Data			
43	ORA	DO	Channel A Output Data. Analog input overrange prompt pin			
44	SDIO	DIO	SPI Data I/O			
45	SCLK	DI	SPI Clock Input			
46	CSB	DI	SPI Chip Select. Active low, 30 kΩ internal pull-up			
47	OEB	DI	Digital Input. If logic low, Channel A and Channel B output Data; if logic high, three-state output. 30kΩinternal pull-down.			
			Digital Input. 30kΩ internal pull-down.			
48	PDWN	DI	PDWN high = power-down			
			PDWN low = operation			
49, 50, 53, 54, 59, 60, 63, 64	AVDD	P	Analog Supply, 1.8 V			
51,52	VIN+A,VIN-A	AI	Differential Analog Input Pin for Channel A			
55	VREF	AIO	Voltage Reference Input/Output.			
56	SENSE	AI	Reference Mode Select.			
57	VCM	AO	Chip Output. Common mode voltage used to provide analog input			
58	RBIAS	AI	Analog Current Bias. Grounded with a 10 kΩ (1%) resistor			
61,62	VIN-B,VIN+B	AI	Differential Analog Input Pin for Channel B.			

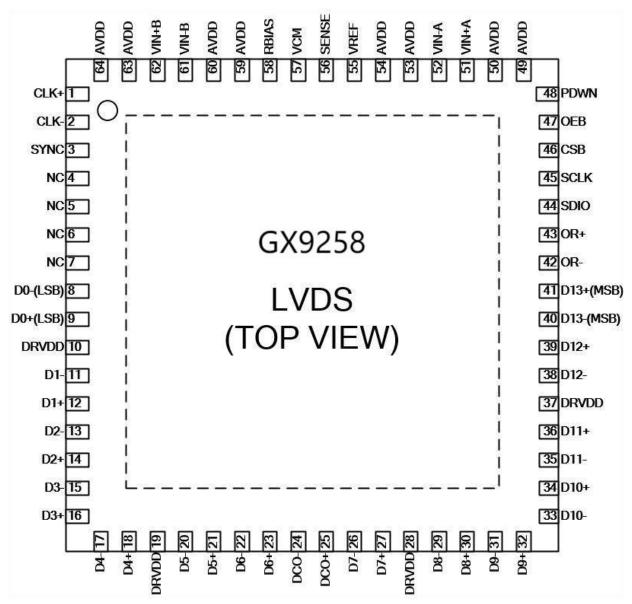


Figure 7 Parallel LVDS Pin Configuration

Table 7 LVDS Pin Function Description

Pin.No	Pin.Name	Type	Description
0	GND	G	Analog Ground. The pad on the bottom of the package provides the analog ground for the part. This bottom pad must be connected to ground for proper operation.
1,2	CLK-, CLK+	AI	Differential Clock Input
3	SYNC	DI	Digital Input. Synchronous input clock divider
4,5,6,7	NC	-	Float
8, 9, 11 to 18, 20 to 23, 26, 27, 29 to 36, 38 to 41	D0-/+ to D13+/-	DO	LVDS Output Data

Pin.No	Pin.Name	Type	Description
10, 19, 28, 37	DRVDD	P	Digital Output Driver Supply. 1.8V Nominal
42,43	OR-/+	DO	LVDS Overrange Data Output
24,25	DCO-/+	DO	LVDS Data Clock Output
44	SDIO	DIO	SPI Data I/O
45	SCLK	DI	SPI Clock Input
46	CSB	DI	SPI Chip Select. Active low, 30 kΩ internal pull-up
47	OEB	DO	Digital Input. If logic low, Channel A and Channel B output Data; if logic high, three-state output. 30kΩinternal pull-down.
			Digital Input. 30kΩinternal pull-down.
33	33 PDWN		PDWN high = power-down
			PDWN low = operation
49, 50, 53, 54, 59, 60, 63, 64	AVDD	P	Analog Supply, 1.8 V
51,52	VIN+A,VIN-A	AI	Analog Input Pin for Channel A.
55	VREF	AIO	Voltage Reference Input/Output.
56	SENSE	AI	Reference Mode Select.
57	VCM	AO	Analog input common mode
58	RBIAS	AI	Analog Current Bias. Grounded with a 10 kΩ (1%) resistor
61,62	VIN-B,VIN+B	AI	Analog Input Pin for Channel B.

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD=1.8 V, DRVDD=1.8 V, VIN=-1.0 dBFS differential input, 1.0 V internal reference, T_A =27°C ,unless otherwise noted.

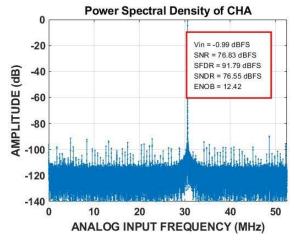


Figure 10 Single-Tone FFT(fin = 30.5MHz@105MSPS)

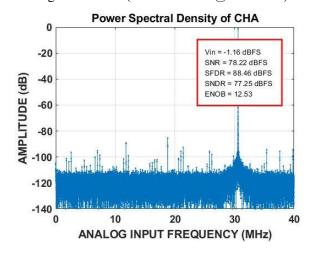


Figure 12 Single-Tone FFT(fin = 30.5MHz@80MSPS)

Figure 11 Single-Tone FFT(fin = 60MHz@105MSPS)

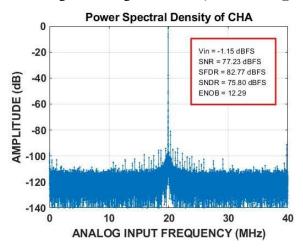


Figure 13 Single-Tone FFT(fin = 60MHz@80MSPS)

TYPICAL APPLICATION CIRCUITS

The typical application circuits of GX9258 such as input signals, input clocks, external DC pins and peripheral devices are as follows.

Analog Input Considerations

Using fully differential mode can ensure optimal ADC performance, to bias the analog input, the VCM voltage can be connected to the center tap of the transformer secondary winding. For applications greater than 10MHz, the coupled differential Dual Balun input is recommended as shown in figure 14. Full differential operational amplifiers can also be used to drive ADC.

In single port applications, using the input network method of VIN- connected to common mode voltage and VIN+ connected to input signal may result in a decrease in ADC performance. Therefore, it is not recommended to drive the GX9258 input at a single port.

In any configuration, the value of parallel capacitor C depends on the input frequency and source impedance, and may need to be reduced or removed. Table 8 shows the recommended values for setting up RC networks. However, these values depend on the input signal and are recommended as application guidelines only.

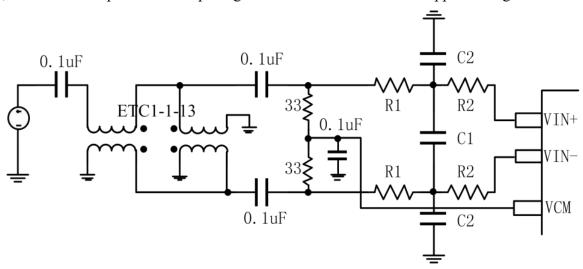


Figure 14 Differential Dual Balun-Coupled Input Configuration

Table 8 RC Example Network

Sampling Frequency (MSPS)	Series Resistor R1/Ω	Series Resistor R2/Ω	Differential Capacitor C1/pF	Shunt Capacitor C2/pF
0-80	33	15	5	15
80-125	10	15	5	10

Clock Input Considerations

For optimum performance, the GX9258 sample clock inputs, CLK+ and CLK-, should be clocked with a differential signal. Clock input circuits are biased internally and require no external bias. The balun driver input is recommended as shown in figure 15. The back-to-back Schottky diodes across the transformer/balun secondary limit clock excursions into the GX9258 to approximately $0.8 \, V_{pp}$ differential.

This limit helps prevent the large voltage swings of the clock from feeding through to other portions of the GX9258 while preserving the fast rise and fall times of the signal that are critical to a low jitter performance.

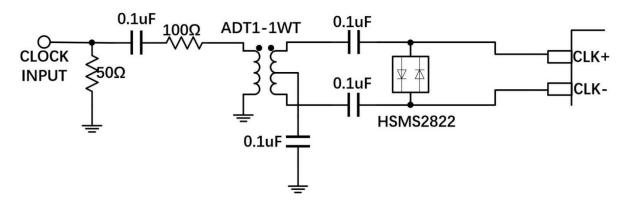


Figure 15 Clock Input Configuration

Reference Configuration

A comparator within the GX9258 detects the potential at the SENSE pin and configures the reference into two possible modes, which are summarized in Table 9. If SENSE is grounded, the internal reference is selected, and the value is 1V; If SENSE connects with AVDD, the external reference is selected, and the value is 1V. It is recommended not to let the SENCE pin float.

Table 9 Reference Configuration Summary

Selected Mode	SENSE Voltage	Resulting VREF (V)	Resulting Differential Span (Vpp)
External Reference	AVDD	1.0 (Applied to external VREF pin)	2.0
Internal Reference	AGND to 0.2	1.0 (Applied to internal VREF pin)	2.0

Digital Outputs

The GX9258 output drivers can be configured to interface with 1.8 V CMOS logic families and can also be configured for LVDS outputs. CMOS output data can also be multiplexed onto a single output bus to reduce the total number of channels required to connect the digital processing end, The timing is shown in Figures 2 and 3. The output driver should be able to provide sufficient output current to drive various logic circuits, and the driving force can be adjusted through registers.

However, large drive currents tend to cause current glitches on the supplies that may affect converter performance. Applications requiring the ADC to drive large capacitive loads or large fanouts may require external buffers or latches.

Input (V) **Condition Offset Binary Output Twos complement Mode** OR Mode VIN+ - VIN-< -VREF - 0.5LSB 00 0000 0000 0000 10 0000 0000 0000 1 VIN+ - VIN-= -VREF 00 0000 0000 0000 10 0000 0000 0000 0 VIN+ - VIN-=010 0000 0000 0000 00 0000 0000 0000 0 VIN+ - VIN-=+VREF - 1LSB 11 1111 1111 1111 01 1111 1111 1111 0 VIN+ - VIN-> +VREF - 0.5LSB11 1111 1111 1111 01 1111 1111 1111

Table 10 Output Data Format

Digital Output Enable Function (OEB)

The GX9258 has a flexible 3-state ability for the digital output pins. The three-state mode is enabled using the OEB pin or through the SPI. If the OEB pin is low, the output IO and DCO are enabled. If the OEB pin is high, the output IO and DCO are placed in a high impedance state.

This OEB function is not intended for rapid access to the data bus. Note that OEB is referenced to the digital output driver supply (DRVDD) and should not exceed that supply voltage. When using the SPI, the data outputs and DCO of each channel can be independently three-stated by using the output enable bar bit (Bit 4) in Register 0x14.

Timing

The GX9258 provides latched data with a pipeline delay of 19 clock cycles. Data outputs are available one propagation delay (t_{PD}) after the rising edge of the clock signal. The length of the output data lines and loads placed on them should be minimized to reduce transients within the GX9258. These transients can degrade converter dynamic performance. The lowest typical conversion rate of the GX9258 is 3 MSPS. At clock rates

below 3 MSPS, dynamic performance can degrade.

Data Clock Output (DCO)

The GX9258 provides two data clock output (DCO) signals intended for capturing the data in an external register. In CMOS output mode, the data outputs are valid on the rising edge of DCO, unless the DCO clock

GXSC

polarity has been changed via the SPI. See Figure 2 and Figure 3 for a graphical timing description of the output modes.

Built-in Self-test (BIST)

The BIST is a thorough test of the digital portion of the selected GX9258 signal path. Perform BIST testing after resetting to ensure that the component is in a known state. When enabled, the test runs from an internal pseudorandom noise (PN) source through the digital data path starting at the ADC block output. The BIST sequence runs for 512 cycles and stops. Once completed, BIST will compare the signature results with predetermined values. If the signature matches, BIST sets bit 0 of register 0x24 to indicate that the test passed. If the BIST test fails, bit 0 of register 0x24 is cleared.

The outputs are connected during this test, so the PN sequence can be observed as it runs. Write the value 0x05 to register 0x0E to run BIST. This will enable bit 0 of register 0x0E (BIST enabled) and reset the PN sequence generator, bit 2 of register 0x0E (BIST INIT). When BIST is completed, bit 0 of register 0x24 is automatically cleared. By writing 0 in bit 2 of register 0x0E, the PN sequence can be continued from the last value. However, if the PN sequence is not reset, the signature calculation is not equal to the predetermined value at the end of the test. At this point, the user needs to rely on verifying the output data.

Output Test Modes

The output test options of address 0x0D are shown in Table 11. When an output test mode is enabled, the analog section of the ADC is disconnected from the digital back end blocks, and the test pattern is run through the output formatting block. Some of the test patterns are subject to output formatting, and some are not.

The seed value for the PN sequence tests can be forced if the PN reset bits are used to hold the generator in reset mode by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be performed with or without an analog signal (if present, the analog signal is ignored), but they do require an encode clock.

SERIAL PORT INTERFACE (SPI)

The GX9258 serial port interface (SPI) allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. Addresses are accessed via the serial port and can be written to or read from via the port. Three pins define the SPI of this ADC: the SCLK pin, the SDIO pin, and the CSB pin. The SCLK (a serial clock) is used to synchronize the read and write data presented from and to the ADC. The SDIO (serial data input/output) is a dual-purpose pin that allows data to be sent to and read from the internal ADC memory map registers. The CSB (chip select bar) is an active-low control that enables or disables the read and write cycles. The timing requirements are shown in Figure 5.

Internal Register Table

Table 11 Register Table

Addre ss (HEX)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default Value (HEX)	Default Notes
0x00	SPI port configur ation (global)	0	LSB first	Soft reset	1	1	Soft reset	LSB first	0	0x18	LSB-first mode or MSB-first mode registers
0x01	Chip ID	chip ID 0x32						0x32	Chip grade ID used to differentia te devices; read only		
0x02	Chip grade		010 = 105MSPS 011=80MSPS							Speed grade ID used to differentia te devices; read only	
0x05	Channel index							Data Chann el B	Data Chan nel A	0x03	Bits are set to determine which device on the chip receives the next write command; The

Addre ss (HEX)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default Value (HEX)	Default Notes
											default value is all channels on the chip
0x08	Mode	External Power- down enable	External pin function 0x00full power- down 0x01 standby					00 = ch 01 = power- 10 = st 11 = d res	full down andby ligital	0x80	Determine various generic modes of chip operation
0x0B	Clock divide						000 001 010 011 100 101 110	divide rat = divide = divide	by 1 by 1 by 2 by 3 by 4 by 5 by 6	0x00	
0x0D	Test mode	User input 00 = s 01 = alt 10 = singl 11 = altern	ingle ternate e once	Reset PN long sequence	Reset PN short seque nce	Output test mode:0000 = off (default) 0001 = midscale short 0010 = positive FS 0011 = negative FS 0100 = alternating checkerboard 0101 = PN 23 sequence 0110 = PN 9 sequence 0111 = one/zero word toggle 1000 = user input 1001 = 1-/0-bit toggle 1010 = 1x sync 1011 = one bit high 1100 = mixed bit frequency		0x00	When this register is set, the test data is placed on the output pins in place of normal data.		
0x0E	BIST enable						BIST INIT		BIST enabl	0x00	Whether to activate BIST function
0x0F	ADC_IN PUT								Com mon mode	0x00	

Addre										Default	
ss (HEX)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value (HEX)	Default Notes
									servo enabl e		
0x10	Offset adjust	Offset		bit device of Bs from +1		-		nent form	at)	0x00	Offset adjust
0x14	ADC Output mode	Drive strength 0 = ANSI LVDS; 1 = reduced swing LVDS	Output type 0 = CMOS 1 = LVDS	CMOS output Interleav ed enable	Outp ut disab le		Outp ut Invert	00 = c bina 01 = c comple 10 = gra 11 = c bina	twos ement ny code	0x00	Configure s the outputs and the format of the data
0x16	Clock phase control	DCO output polarity 0 = normal 1 = inverted					[2:0] (of inpu p 00 001 = 010 = 100 = 110 =	lock phase Value is not clock cy hase delay 0 = no del 1 input of cycle 2 input of cycles 3 input of cycles 4 input of cycles 5 input of cycles 6 input of cycles 7 input of cycles	umber reles of (1) ay elock elock elock elock elock	0x00	Determine which phase of the divider be used as clock output when used on global clock division device. Internal locking not affected
0x17	output delay		00 00 01 01 10 10	ATA_Delay 10 = 0.29 ns 1 = 0.58 ns 0 = 0.87 ns 1 = 1.16 ns 1 = 1.45 ns 1 = 1.74 ns 1 = 1.74 ns 1 = 2.32 ns			00 00 01 01 10	OCO_Dela 00 = 0.29 : 01 = 0.58 : 10 = 0.87 : 11 = 1.16 : 00 = 1.45 : 01 = 1.74 : 10 = 2.03 : 11 = 2.32 :	ns ns ns ns ns ns ns ns ns	0x00	Set the fine output delay of the output clock, but it will not change the internal Partial timing

Addre	Addra										
ss (HEX)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value (HEX)	Default Notes
0x19	USER_P ATT1_L SB	В7	В6	В5	B4	В3	B2	B1	В0	0x00	User Defined Mode, 1 LSB
0x1A	USER_P ATT1_ MSB	B15	B14	B13	B12	B11	B10	В9	B8	0x00	User Defined Mode, 1 MSB
0x1B	USER_P ATT2_L SB	В7	В6	В5	B4	В3	B2	B1	В0	0x00	User Defined Mode, 2 LSB
0x1C	USER_P ATT2_ MSB	B15	B14	B13	B12	B11	B10	В9	B8	0x00	User Defined Mode, 2 MSB
0x24	MISR_L SB								В0	0x00	Least significant byte of MISR; Read only.
0x2A	Feature								OR Outp ut Enab le	0x01	Disable index channel OR pin
0x2E	Output Control								0 = ADC A 1 = ADC B	Ch A = 0x00 Ch B = 0x01	Assign ADC to output channel
0x100	Sync Control						Clock divid er next sync only	Clock divider sync enable	Mast er sync enabl e	0x01	
0x101	USR2	Enable OEB Pin 47								0x80	

APPLICATIONS INFORMATION

Power And Ground Recommendations

It is recommended that two separate power supplies are used for the GX9258. one is for analog power

(AVDD), the other is for digital power (DRVDD). For AVDD and DRVDD, several different decoupling

capacitors should be used to reduce high and low frequencies noise.

these capacitors should be close to the pins of the device with minimal trace length. A single PCB ground

plane is sufficient for the GX9258. With proper decoupling and being isolated between sections of analog,

digital, and clock, optimum performance is easily achieved.

Exposed Pad Recommendations

It is mandatory that the exposed paddle on the underside of the ADC be connected to analog ground (AGND)

to achieve the best electrical and thermal performance. continuous exposed (no solder mask) copper plane on

the PCB should match the GX9258 exposed paddle. The copper plane should have as much as through vias to

achieve as lower as thermal resistance for heat dissipation.

These vias should be filled to prevent solder wicking. To optimized adhere the ADC to the PCB, silkscreen is

recommended to partition the continuous plane on the PCB into several uniform sections that provide several

tie points between the ADC and the PCB during the reflow process. Since there is only one connection point

between the ADC and the PCB Using one continuous plane with no partitions.

VCM

The VCM pin should be decoupled to ground with a 0.1 µF capacitor.

RBIAS

The GX9258 requires that a 10 k Ω resistor be placed between the RBIAS pin and ground. This resistor sets the

master current reference of the ADC core and should have at least a 1% tolerance.

Reference Decoupling

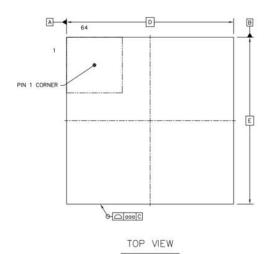
The VREF pin should be externally decoupled to ground with a low ESR, 1.0 μF capacitor in parallel with a

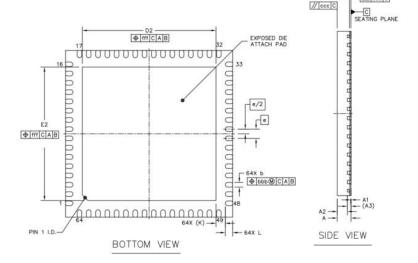
low ESR, 0.1 µF ceramic capacitor.

SPI Port

The SPI port should not be active during periods when the full dynamic performance of the converter is required. Because the SCLK, CSB, and SDIO signals are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the GX9258 to keep these signals from transitioning at the converter inputs during critical sampling periods.

Data Output


If data output delay is fixed, power on timing is required (it is necessary to power on the DRVDD's power then wait a few milliseconds before power on the AVDD). If data synchronization output between channels is required, the data output path needs to be reset as follows:


SPI_Write (0x08 0x03);

SPI_Write (0x08 0x00);

OUTLINE DIMENTIONS

		SYMBOL	MIN	NOM	MAX		
TOTAL THICKNESS		A	0.7	0.75	0.8		
STAND OFF		A1	0	0.02	0.05		
MOLD THICKNESS		A2		0.55			
L/F THICKNESS		A3		0.203 REF			
LEAD WIDTH	ь	0.2	0.25	0.3			
BODY SIZE	X	D		9 BSC			
BODT SIZE	Y	E	9 BSC				
LEAD PITCH	- 65	е	0.5 BSC				
EP SIZE	×	D2	7.1	7.2	7.3		
EP SIZE	Y	E2	7.1	7.2	7.3		
LEAD LENGTH	127	L	0.3 0.4		0.5		
LEAD TIP TO EXPOSE	D PAD EDGE	K	0.5 REF				
PACKAGE EDGE TOLE	RANCE	000	0.1				
MOLD FLATNESS		ccc	0.1				
COPLANARITY		eee	0.08				
LEAD OFFSET	bbb	0.1					
	EXPOSED PAD OFFSET		0.1				

Figure 16 QFN-64 (Dimension shown in millimeter)

ORDERING GUIDE

Part No.	OP Temp	Package
GX9258GDLUMY-80	-40 ~ 85°C	QFN-64
GX9258GDLUMY- 105	-40 ~ 85°C	QFN-64

Note: Packaging can be customized according to customer needs.

DECLARATION

The above information is for reference only, and is intended to assist GXSC (Shenzhen) Technology Co., Ltd's customers in their research and development. GXSC (Shenzhen) Technology Co., Ltd reserves the right to change the above information without prior notice due to technological innovation.

Contact Us:

NAME: JESSE

EMAIL:service jesseli@gxschip.com

WECHAT: f40044269 FACEBOOK:GXSC VK:@id836505054